MONTHLY WEATHER REVIEW Editor, EDGAR W. WOOLARD Vol. 68, No. 4 W. B. No. 1294 **APRIL 1940** CLOSED JUNE 3, 1940 ISSUED JULY 24, 1940 ## AN INSTRUMENT FOR THE SPECTROSCOPIC DETERMINATION OF PRECIPITABLE ATMOSPHERIC WATER VAPOR, AND ITS CALIBRATION By IRVING F. HAND [Weather Bureau, Washington, D. C., January 1940] The regular daily determination of the amount of precipitable water in the atmosphere is of importance in meteorology for both practical and theoretical purposes. Surface determinations have been made by means of the The Weather Bureau is now greatly indebted to the Smithsonian Institution which, through the courtesy of Charles G. Abbot and L. B. Aldrich, designed and fabricated for the Weather Bureau an improved type of water- FIGURE 1.—Optical train of the water-vapor spectroscope. psychrometer ever since the earliest days of meteorology; while the vertical distribution of water vapor has been determined to limited heights by kite, balloon, and airplane flights and, more recently, by means of the radiosonde. Some years ago, the Weather Bureau initiated optical determinations of precipitable water by pyrheliometric measurements of solar radiation through red and yellow filters which cut off long-wave radiation at approximately 0.61 μ and 0.51 μ , respectively. However, this method is subject to considerable uncertainty, especially because the filters do not cut off sharply, and because of various assumptions, for example, the adoption of the value 1.3 μ for the average size of dust particles in the free atmosphere; our own atmospheric dust observations, as well as observations by others, show the impracticability of using a constant factor for all environments. vapor spectroscope, of design similar to the one used by the Smithsonian Astrophysical Observatory about 8 years ago. We are further indebted to officials of the same Institution in permitting the calibration of the instrument at its two solar constant stations at Burro Mountain, N. Mex., and Table Mountain, Calif. At the first-named station Alfred F. Moore and Alfred D. Froiland more than doubled the usual total number of bolometric runs in order to obtain as many comparisons as possible; they also took turns in keeping the instrument pointed on the sun. Similar cooperation was furnished at Table Mountain by Fred A. Greeley and Stanley Warner. The water-vapor instrument consists essentially of a spectroscope containing a collimator lens and a 60°-prism in a Littrow mounting, a lens to focus the solar rays on a slit ½ millimeter in width, and a thermocouple having two rectangular surfaces as nearly identical as it is practical to make them. Figure 1 shows the optical train, and figures 3 and 4 an exterior view of the instrument. The thermocouple, ¹ Kimball, Herbert H., and Hand, Irving F. The use of glass color screens in the study of atmospheric depletion of solar radiation. Mo. Wes. Rev., March 1933. 61: 80-83. ² Hand, Irving F. The character and magnitude of the dense dust-cloud which passed over Washington, D. C., May 11, 1934. Mo. Wes. Rev., 62: 186-187. May 1924. designed and made by Leland B. Clark of the Smithsonian Institution, is of a new and highly efficient design. It is so arranged that by moving it into three different fixed positions, measurements may be made in different parts of the spectral band: The two sections of the solar energy spectrum observed are (A), a 0.003μ width centered around 0.9560μ , where the energy curve is not appreciably affected by water-vapor absorption; and (B), a 0.003μ width in the FIGURE 2.—Amounts of precipitable water corresponding to different ratios obtained by readings with the spectroscope. center of the rho water-vapor absorption band at wavelength 0.935μ . The base line (C) is obtained by completely shading one strip. A high-sensitivity galvanometer is used for all measurements. In position 1, one strip on A and the other on B, we measure the differential between rho and the crest, or the diminution in energy owing to water-vapor absorption; in position 2, one strip on B and the other completely shaded, we obtain the height of rho above the base line; in position 3, one strip on A and the other completely shaded, we determine the energy at the crest, which should equal the sum of the energies obtained in the first two positions.³ This value also may be used for a rough determination of the total normal-incidence radiation. To eliminate errors arising from inequalities in strip characteristics, the strips are reversed after making the initial reading in each position. Although any two of the positions would suffice for a reading, in actual practice all three positions are read and, as an added check, immediately reread in reverse order to minimize arithmetical errors. The instrument is kept directed to the sun, manually, by means of a sight at the outer end of the tube through which a pencil of rays passes on to a target at the lower end. A circular opening near the outer end, through which the observer may see when the solar rays are concentrated centrally on the slit, enables him to make an appropriate spot on the target. A small prism projects the portion of the spectral band containing the A line at 0.760 µ to a field which may be viewed by means of an eye-piece containing a cross hair, in order to obtain an approximate setting of the strips on the rho band. The final setting is effected by reading the instrument in position 2 and adjusting the mirror until a minimum reading is obtained. If the instrument is mounted rigidly in a fixed position neither of these adjustments is necessary except at infrequent intervals as checks. Owing to the great length of the tube and the extreme sensitivity of the thermocouple, it is necessary for one observer to continually make both altitude and aximuth adjustments, and at the same time change the position of the thermopile and turn it through 180° upon signal from the observer during readings. At the two Smithsonian solar-constant stations, complete records of the solar energy curve from 0.34μ to 2.34μ are made on each clear day by means of the vacuum bolometer 4; six bolographs are used for the determination of the solar constant on very clear days, and three on less clear days. As previously stated, in order to obtain as many comparisons as possible during these tests, the number of bolographs was increased to as much as three times normal on exceptionally clear days. By reduction of these bolographs the Smithsonian observers have calculated the amount of precipitable water in the atmosphere during each of the runs and these values have been plotted as ordinates against the readings of the new spectroscope as abscissas, fig. 2. Aldrich believes that the Table Mountain results give more accurate values of precipitable water in the atmosphere than the Burro Mountain readings; hence the Table Mountain calibrations have been used exclusively in preparing table 1, which gives the amounts of precipitable water corresponding to different readings of the new instrument. All values obtained at Table Mountain (with the exception of those obtained on the morning of October 20 when the instrument obviously was out of adjustment) have been utilized for the calibration. The probable error of a single observation, calculated from the line of best of all the readings by the formula $0.6745\sqrt{\frac{\Sigma v^2}{n-1}}$, is ± 0.19 cm. The individual half-day runs were also plotted, and the probable error of a single observation calculated from the lines of best fit; smooth curves were drawn, rather than lines zig-zagging from point to point. In general the curves of the individual half-day runs are very similar to ^{*} Moore, A. F. Scouting for a site for a solar radiation station. Smithsonian Misc. Coll. Vol. 89, No. 4. Washington, 1933. 4 Abbot, C. G., Fowle, F. E., and Aldrich, L. B. The Vacuum Bolometer. Annals of the Astrophysical Observatory of the Smithsonian Institution, Volume 4, Chapter 2, pp. 45-64. Washington, 1922. Figure 4.—Water-vapor spectroscope at Table Mountain, Calif. Radiation fog rising up slopes of the Blue Mountains. the curve of all the observations, falling symmetrically on both sides of the latter; the instrument was adjusted on rho immediately preceding each run, but since it was impossible to exactly duplicate the settings with the temporary set-up of the instrument, each run was made with the strips set on a slightly different portion of the rho band, which explains why the individual days vary even though they closely parallel one another. It has been calculated that one half of the probable error of ± 0.19 cm. is due directly to these improper adjustments on rho; to eliminate this portion of the error, we shall replace the cross hair so that it bisects the double A line when the best possible setting on rho is made, and the settings may then be effected with great accuracy and with assurance that all are alike. The probable error of future readings should be thus reduced from ± 0.19 cm. to about ± 0.10 cm. This reduction is highly important because we shall be concerned chiefly with changes in the amounts of atmospheric water. Table 2 gives the probable errors of single observations from the individual lines of half-day runs. Table 1.—Amounts of precipitable water in centimeters corresponding to different ratios of ρ/C obtained with the water-vapor spectroscope | p/C | em. | ρ/C | cm. | ρ/C | em. | ρ/C | cm. | ρ/C | em. | ρ/C | cm. | ρ/С | em. | |--|--|--|--|--|--|--|--|--|---|--|---|--|---| | 0.110
0.111
0.112
0.113
0.114
0.115
0.116
0.117 | 7. 03
6. 99
6. 96
6. 92
6. 88
6. 85
6. 81
6. 77
6. 74
6. 70 | 0. 160
0. 161
0. 162
0. 163
0. 164
0. 165
0. 166
0. 167
0. 168
0. 169 | 5. 13
5. 09
5. 05
5. 01
4. 97
4. 93
4. 89
4. 85
4. 80
4. 76 | 0. 210
0. 211
0. 212
0. 213
0. 214
0. 215
0. 216
0. 217
0. 218
0. 219 | 3, 28
3, 25
3, 21
3, 18
3, 15
3, 11
3, 08
3, 04
3, 00
2, 96 | 0. 260
0. 261
0. 262
0. 263
0. 264
0. 265
0. 266
0. 267
0. 268
0. 269 | 1. 84
1. 82
1. 80
1. 78
1. 76
1. 74
1. 72
1. 70
1. 68
1. 66 | 0. 310
0. 311
0. 312
0. 313
0. 314
0. 315
0. 316
0. 317
0. 318
0. 319 | 1. 02
1. 01
1. 00
. 99
. 98
. 97
. 96
. 95
. 94
. 92 | 0, 360
0, 361
0, 362
9, 363
0, 364
0, 365
0, 366
0, 367
0, 368
0, 369 | 0. 54
. 53
. 52
. 52
. 51
. 50
. 50
. 49
. 48
. 48 | 0. 410
0. 411
0. 412
0. 413
0. 414
0. 415
0. 416
0. 417
0. 418
0. 419 | 0. 24
. 23
. 23
. 23
. 22
. 22
. 22
. 21
. 21 | | 0.120.
0.121.
0.122.
0.123.
0.124.
0.125.
0.126.
0.127.
0.128. | 6. 67
6. 63
6. 59
6. 55
6. 51
6. 18
6. 44
6. 40
6. 37
6. 34 | 0. 170
9. 171
0. 172
0. 173
0. 174
0. 175
0. 176
0. 177
0. 178
0. 179 | 4. 72
4. 69
4. 65
4. 62
4. 58
4. 54
4. 51
4. 47
4. 43
4. 40 | 0. 220
0. 221
0. 222
0. 223
0. 224
0. 225
0. 226
0. 227
0. 228
0. 229 | 2. 93
2. 90
2. 87
2. 54
2. 81
2. 78
2. 74
2. 71
2. 68
2. 65 | 0. 270
0. 271
0. 272
0. 273
0. 274
0. 275
0. 276
0. 277
0. 278
0. 279 | 1. 64
1. 62
1. 60
1. 58
1. 56
1. 55
1. 53
1. 52
1. 50
1. 49 | 0. 320
0. 321
0. 322
0. 323
0. 324
0. 325
0. 326
0. 327
0. 328
0. 329 | . 91
. 90
. 89
. 88
. 87
. 86
. 85
. 84
. 83
. 82 | 0. 370
0. 371
0. 372
0. 373
0. 374
0. 375
0. 376
0. 377
0. 378
0. 379 | . 47
. 46
. 46
. 45
. 44
. 43
. 42
. 42 | 0. 420
0. 421
0. 422
0. 423
0. 424
0. 425
0. 426
0. 427
0. 428
0. 429 | . 20
. 20
. 20
. 19
. 19
. 19
. 19
. 18
. 18 | | 0.130.
0.131.
0.132.
0.133.
0.134.
0.135.
0.136.
0.137.
0.138. | 6. 30
6. 26
6. 22
6. 18
6. 14
6. 11
6. 07
6. 04
6. 00
5. 97 | 0. 180
0. 181
0. 182
0. 183
0. 184
0. 185
0. 186
0. 187
0. 188
0. 189 | 4. 36
4. 32
4. 28
4. 25
4. 21
4. 18
4. 14
4. 11
4. 07
4. 04 | 0. 230
0. 231
0. 232
0. 233
0. 234
0. 235
0. 236
0. 237
0. 238
0. 239 | 2, 62
2, 59
2, 56
2, 53
2, 56
2, 47
2, 45
2, 43
2, 41
2, 38 | 0. 280
0. 281
0. 282
0. 283
0. 284
0. 285
0. 286
0. 287
0. 288
0. 289 | 1. 47
1. 45
1. 44
1. 42
1. 40
1. 38
1. 36
1. 34
1. 32
1. 31 | 0. 330
0. 331
0. 332
0. 333
0. 334
0. 335
0. 336
0. 337
0. 338
0. 339 | . 81
. 80
. 79
. 78
. 77
. 76
. 75
. 74
. 73 | 0, 380
0, 381
0, 382
0, 383
0, 384
0, 385
0, 386
0, 387
0, 388
0, 389 | . 41
. 40
. 40
. 39
. 38
. 38
. 37
. 36
. 36
. 35 | 0. 430
0. 431
0. 432
0. 433
0. 434
0. 435
0. 436
0. 437
0. 438
0. 439 | . 18
. 18
. 17
. 17
. 17
. 17
. 16
. 16 | | 0.140_
0.141_
0.142_
0.143_
0.144_
0.145_
0.146_
0.147_
0.148_
0.149_ | 5. 93
5. 89
5. 85
5. 81
5. 77
5. 73
5. 69
5. 65
5. 61
5. 57 | 0. 190
0. 191
0. 192
0. 193
0. 194
0. 195
0. 196
0. 197
0. 198
0. 199 | 4.00
3.96
3.93
3.90
3.87
3.85
3.76
3.76
3.73 | 0. 240
0. 241
0. 242
0. 243
0. 244
0. 245
0. 246
0. 247
0. 248
0. 249 | 2. 36
2. 33
2. 30
2. 27
2. 25
2. 22
2. 20
2. 17
2. 14
2. 12 | 0. 290
0. 291
0. 292
0. 293
0. 294
0. 295
0. 296
0. 297
0. 298
0. 299 | 1. 29
1. 28
1. 27
1. 26
1. 25
1. 24
1. 22
1. 20
1. 19
1. 17 | 0. 340
0. 341
0. 342
0. 343
0. 345
0. 345
0. 346
0. 347
0. 348
0. 349 | .71
.70
.69
.68
.67
.66
.65
.64 | 0. 390
0. 391
0. 392
0. 393
0. 394
0. 395
0. 396
0. 397
0. 398
0. 399 | . 34
. 33
. 33
. 32
. 32
. 31
. 30
. 30
. 29 | 0. 446
0. 447
0. 448 | . 16
. 16
. 16
. 15
. 15
. 15
. 15
. 15 | | 0.150
0.151
0.152
0.153
0.154
0.155
0.156
0.157
0.158
0.159 | 5. 54
5. 50
5. 26
5. 42
5. 38
5. 34
5. 30
5. 26
5. 22
5. 18 | 0. 200
0. 201
0. 202
0. 203
0. 204
0. 205
0. 206
0. 207
0. 208
0. 209 | 3. 65
3. 62
3. 58
3. 55
3. 51
3. 48
3. 44
3. 40
3. 36
3. 32 | 0. 250
0. 251
0. 252
0. 253
0. 254
0. 255
0. 256
0. 257
0. 258
0. 259 | 2. 09
2. 07
2. 04
2. 02
2. 00
1. 97
1. 94
1. 92
1. 89
1. 87 | 0. 300
0. 301
0. 302
0. 303
0. 304
0. 305
0. 306
0. 307
0. 308
0. 309 | 1. 15
1. 14
1. 12
1. 11
1. 10
1. 08
1. 07
1. 06
1. 04
1. 03 | 0. 350
0. 351
0. 352
0. 353
0. 354
0. 355
0. 356
0. 357
0. 358
0. 359 | . 63
. 63
. 61
. 60
. 60
. 59
. 58
. 57
. 56
. 55 | 0. 400
0. 401
0. 402
0. 403
0. 404
0. 405
0. 406
0. 407
0. 408
0. 409 | . 28
. 28
. 27
. 26
. 25
. 25
. 25
. 25
. 24
. 24 | 0.450 | . 15 | Table 2.—Probable errors of single observations from individual curves | Date | Probable error ± | Date | Probable
error ± | |----------------|------------------|----------------|---------------------| | 1939 | cm. | 1939 | cm. | | Oct. 17, a. m. | 0.14 | Oct. 20, p. m | 0.11 | | Oct. 18, a. m | . 10 | Oct. 21, a. m. | . 07 | | Oct. 19, a. m | , 10 | Oct. 21, p. m | . 07 | | Oct. 19, p. m | .05 | Oct. 22, p. m | . 07 | | Oct. 20, a. m. | . 04 | Mean | 1.08 | ¹Probable error from plot of all observations, as shown in text, is ± 0.19 cm. According to Harrison 5 the average amounts of precipitable water in a vertical atmospheric column over Washington, D. C., are as follows: Spring, 1.69 centimeters; summer, 3.49 centimeters; autumn, 2.23 centimeters; and winter, 1.00 centimeters. As all of our observations will be made through air masses greater than 1.0, the actual amounts of precipitable water measured will in general exceed these values. We found more consistent readings with larger air masses than with the sun near the zenith, which is explained in part by the fact that incipient clouds passing between the sun and instrument create much larger variations during a series when the sun is nearly overhead than when the sun is at a lower altitude, because the incipient cloud with its water content represents a larger percentage of the total water being measured and its slightest movement, unless it is absolutely uniform, alters the readings. In table 3 are tabulated the original observations together with the times, air masses, reductions, factors, amounts of precipitable water through the observed air masses and the precipitable water reduced to unit air mass. Table 3.—Reduction of water-vapor observations BURRO MOUNTAIN, N. MEX. SEPTEMBER 23, 1939 | Time | Air
mass | Readings | | | Factor | Ppt.
H ₂ O | Ppt.
H ₂ O
1.0 air
mass | |--|---|---|--|---|--|---|---| | 8:00 a. m.
8:14 a. m.
8:30 a. m.
8:49 a. m.
9:14 a. m.
9:33 a. m.
10:12 a. m.
11:10 a. m. | 2. 47
2. 22
2. 02
1. 81
1. 61
1. 51
1. 35
1. 22 | 209
204
204
201
200
203
199
193 | 101
106
109
109
114
123
126
128 | 310
309
314
310
318
325
327
327 | 0. 326
. 341
. 349
. 352
. 367
. 376
. 390
. 404 | Cm.
1. 35
1. 19
1. 10
. 99
. 89
. 90
. 79
. 63 | Cm
0. 55
. 54
. 54
. 55
. 55
. 60
. 59
. 52 | | SEP | ТЕМВІ | ER 24, | 1939 | | | | | | 6:48 a. m. 6:58 a. m. 7:10 a. m. 7:29 a. m. 7:52 a. m. 9:37 a. m. 9:36 a. m. 11:04 a. m. | 6. 18
5. 14
4. 21
3. 31
2. 52
1. 51
1. 40
1. 23 | 230
231
227
226
227
205
205
199 | 50
59
65
75
84
101
102
107 | 279
290
299
301
315
304
313
315 | 0. 177
. 203
. 232
. 249
. 275
. 328
. 339
. 359 | 5. 12
4. 50
3. 81
2. 85
2. 23
1. 51
1. 49
1. 25 | 0.83
.88
.90
.86
.88
1.00
1.06 | | SEP. | гемве | R 25, | 1939 | | | | | | 6:46 a. m. 6:58 a. m. 7:07 a. m. 7:18 a. m. 7:24 a. m. 8:01 a. m. 8:17 a. m. 8:39 a. m. | 6. 96
5. 39
4. 51
3. 96
3. 53
2. 51
2. 20
1. 93
1. 51 | 276
279
278
274
273
262
256
250
235 | 40
48
56
67
65
81
89
93
110 | 317
329
332
342
341
347
347
351
353 | 0. 128
. 149
. 165
. 198
. 196
. 241
. 260
. 280
. 327 | Off tal
5. 93
4. 50
3. 81
2. 85
2. 23
1. 51
1. 49
1. 25 | ple. 1. 10 1. 00 . 95 . 81 . 89 . 69 . 77 . 83 | | SEP | темві | FR 26, | 1939 | | | | | | 6:40 a. m.
6:48 a. m.
7:00 a. m.
7:12 a. m.
7:30 a. m.
8:00 a. m.
8:32 a. m.
9:35 a. m. | 7. 87
6. 51
5. 14
4. 23
3. 32
2. 50
2. 00
1. 50
1. 27 | 261
260
259
256
249
243
230
224
204 | 35
41
50
55
63
75
84
100
110 | 297
301
309
313
319
320
316
326
316 | 0. 120
. 136
. 162
. 179
. 211
. 238
. 270
. 311
. 352 | Off te
6. 55
5. 40
4. 72
3. 67
2. 87
2. 27
1. 68
1. 39 | 1.01
1.05
1.12
1.11
1.15
1.14
1.11
1.09 | ¹ Harrison, Louis P. On the water-vapor in the atmosphere over the United States east of the Rocky Mountains. Mo. Wea. Rev. 59: 470. December, 1931. Table 3.—Reduction of water-vapor observations—Continued SEPTEMBER 27, 1939 | 5211 | EMIDE | R 27, 1939 | | | | |--|---|---|--|---|--| | Time | Air
mass | Readings | Factor | Ppt.
H ₂ O | Ppt.
H ₂ O
1.0 air
mass | | 34 a. m | 9. 30
6. 76
5. 59
4. 77
4. 02
2. 52
2. 00
1. 50
1, 23 | 259 36 294
266 44 312
259 50 311
258 57 316
256 66 323
238 87 329
222 112 343
217 114 337
202 130 339 | 0. 121
. 145
. 165
. 182
. 206
. 272
. 344
. 350
. 398 | Cm.
Off tab
6. 18
5. 35
4. 71
3. 81
2. 13
1. 27
1. 05
. 79 | Cm. e. 0.91 .96 .98 .95 .85 .64 .70 | | :39 p. m
:45 p. m
:07 p. m
:27 p. m
:43 p. m
:57 p. m
:57 p. m
:58 p. m
:518 p. m
:528 p. m | 4. 25 | 227 145 372
232 109 349
237 99 344
238 97 344
245 90 345
243 84 341
239 75 321
244 64 314
246 57 309 | .390
.313
.303
.299
.279
.269
.247
.215
.196 | . 76 1. 21 1. 52 1. 66 1. 89 2. 27 2. 49 3. 36 4. 24 | . 57
. 57
. 61
. 56
. 54
. 53
. 48
. 53 | | SEP | темве | ER 28, 1939 | | | | | 6:39 a. m
6:40 a. m
7:03 a. m
7:14 a. m
7:35 a. m
8:04 a. m
8:36 a. m
9:41 a. m
11:25 a. m | 6. 72
5. 05
4. 18
3. 28
2. 51
2. 01
1. 50 | 234 85 323
233 92 325
233 104 333
226 109 337
217 118 339
212 123 340
205 128 340
200 136 332
190 137 335 | . 283
. 304
. 327
. 356
. 372
. 391
. 401 | 2. 23
1. 89
1. 34
1. 05
. 85
. 69
. 59
. 48
. 42 | . 26
. 28
. 27
. 25
. 26
. 27
. 29
. 32
. 34 | | 1:33 p. m. 3:17 p. m. 3:32 p. m. 3:34 p. m. 3:46 p. m. 4:07 p. m. 4:36 p. m. 4:35 p. m. 5:18 p. m. 5:18 p. m. | 1. 84
2. 00
2. 16
2. 50
3. 26
4. 15
5. 02
6. 24 | 195 128 331
208 123 337
214 106 331
213 109 329
220 103 327
231 89 324
236 79 318
240 69 306
236 66 306
231 56 302 | .323
.283
.254
.223
.224 | . 56
. 55
. 98
. 84
1. 19
1. 70
2. 53
3. 26
3. 51
4. 45 | . 42
. 30
. 48
. 38
. 48
. 55
. 61
. 65
. 56 | | ¹ Clouds during observation.
SEP | темві | ER 29, 1939 | • | • | ·· | | 6:37 a. m | 8.87
6.96
5.12
4.21
3.30
2.51
2.01 | 234 78 322
234 83 324
234 95 333
222 94 321
220 95 322
213 103 324
203 113 325
192 125 323 | . 272
. 293
. 303
. 310
. 335
. 370 | 2. 52
2. 02
1. 59
1. 40
1. 20
. 97
. 73
. 58 | 0. 28
29
31
.33
.36
.39
.36
.39 | | 0.0 | 70000 | TAIN, CALIF. | _ [_ | <u> </u> | <u>.l</u> | | 6:56 a. m.
7:12 a. m.
7:37 a. m.
8:03 a. m.
8:41 a. m.
10:05 a. m.
11:42 a. m. | 4. 90
3. 88
2. 99
2. 50
2. 01
1. 50 | 205 81 300
186 77 27
184 89 276
179 100 27
175 98 27
173 90 26
182 79 256 | 309
330
358
358
364
347 | 1. 49
1. 22
. 86
. 74
. 67
. 59
. 80 | 0. 30
. 31
. 20
. 30
. 33
. 38
. 57 | | | TOBEI | 3. 18, 1939 | 1 | | 1 | | 1.43 p. m. 2:05 p. m. 2:08 p. m. 2:38 p. m. 2:49 p. m. 3:08 p. m. 3:08 p. m. 3:08 p. m. 3:58 p. m. 4:14 p. m. 4:24 p. m. 4:34 p. m. 4:34 p. m. | 1.80
1.99
2.20
2.49
3.00
4.00
4.99
5.93 | 196 81 277
192 71 267
211 79 283
210 75 277
208 68 270
215 64 277
214 60 274
211 56 267
212 53 260
213 48 263 | 7 .275
3 .268
9 .258
6 .246
9 .231
4 .219
7 .210 | 1. 28
1. 36
1. 53
1. 68
1. 90
2. 36
2. 83
3. 17 | 0. 66
. 76
. 68
. 71
. 67
. 67
. 55
. 55 | Table 3.—Reduction of water-vapor observations—Continued OCTOBER 19, 1939 | 1 | OBER | | | | | Ppt. | |--|--|--|--|--|--|---| | Time | Air
mass | Rea | dings | Factor | Ppt.
H₃O | H ₂ O
1.0 air
mass | | 3:36 a. m.
3:56 a. m.
7:12 a. m.
7:39 a. m.
8:02 a. m.
8:40 a. m.
10:07 a. m. | 7. 41
4. 97
4. 00
3. 00
2. 50
2. 01
1. 50
1. 39 | 245
238
237
217
224
224
202
212 | 75 320
96 338
98 339
99 322
101 328
109 327
112 318
110 324 | .314
.336
.361 | Cm.
2.04
1.33
1.05
.83
.70
.57
.57 | Cm.
0. 28
. 27
. 26
. 28
. 28
. 28
. 38
. 47 | | 12:57 p. m
2:26 p. m
3:04 p. m
3:33 p. m | 1. 50
2. 00
2. 49
3. 09
4. 02 | 186
193
192
193
197 | 94 286
88 283
83 278
74 279
68 271 | .316
.302
.293 | . 77
. 93
1. 04
1. 32
1. 76 | .51
.46
.42
.43 | | 00 | TOBER | 20, 19 | 39 | | | | | 1·27 p. m.
2·27 p. m.
3·04 p. m.
3·27 p. m.
3·54 p. m.
4·09 p. m.
4·19 p. m. | 1. 61
2. 02
2. 41
3. 00
4. 03
5. 01
5. 99
7. 44 | 207
209
210
213
214
212
211
215 | 108 311
99 300
89 300
83 300
75 300
67 289
64 279
59 270 | 321
302
302
285
274
254
2 228 | 0.75
.95
1.26
1.59
2.22
2.66
3.20
3.96 | 0. 47
. 47
. 52
. 53
. 55
. 53
. 53
. 53 | | ос | TOBER | 21, 19 | 39 | | | | | 6:32 a. m.
6:42 a. m.
6:58 a. m.
7:14 a. m.
7:42 a. m.
8:05 a. m.
8:45 a. m.
11:34 a. m. | 9. 35
7. 21
4. 98
3. 98
3. 02
2. 50
2. 01
1. 41 | 213
213
207
206
218
202
193
184 | 55 27.
67 28
78 29
84 29
99 31
99 30
111 30
109 29 | 1 .245
3 .284
6 .297
7 .312
5 .333
8 .369 | 3.85
2.83
1.93
1.64
1.11
.85
.64 | 0. 41
. 39
. 39
. 41
. 37
. 34
. 32
. 30 | | 1:08 p. m | 2, 98
3, 29
3, 99 | 188
190
202
206
206
207
211
219 | 100 29
93 28
82 28
76 28
71 28
69 28
60 27
50 27 | 9 .336
7 .292
3 .271
5 .267
0 .255
5 .227 | 0. 49
.75
1. 24
1. 31
1. 59
2. 00
2. 43
3. 28 | 0. 32
. 38
. 42
. 40
. 40
. 41
. 46 | | 00 | TOBER | 22, 19 | 939 | | | | | 6:34 a. m.
6:44 a. m.
7:00 a. m.
7:16 a. m.
7:44 a. m.
8:07 a. m. | 5.02 | 215
214
209
208
197
204 | 57 27
67 28
75 28
80 29
93 29
90 30 | 3 .241
9 .271
4 .285
8 .330 | 3. 61
2. 61
1. 85
1. 51
1. 00
. 97 | 0. 41
. 38
. 37
. 37
. 33
. 39 | | 00 | TOBER | 23, 19 | 939 | | | | | 1:28 p. m.
1:42 p. m.
2:29 p. m.
2:59 p. m.
3:21 p. m.
3:50 p. m.
4:05 p. m.
4:16 p. m.
4:26 p. m.
4:37 p. m. | 2. 50
2. 99
3. 97
4. 98
5. 93
7. 30 | 208
208
206
216
223
221
224
224
222
185 | 76 29 77 29 66 28 63 28 61 29 58 26 50 27 47 27 39 26 23 20 | 4 .281
4 .259
9 .239
0 .223
3 .214
8 .188
1 .173
3 .153 | 1. 48
1. 52
1. 87
2. 26
2. 61
3. 37
4. 01
4. 61
5. 40
7. 00 | 0. 89
. 88
. 89
. 90
. 87
. 85
. 81
. 78
. 74 | | 00 | товен | 25, 1 | 939 | | | | | 7:47 a. m | 2. 51
2. 21
2. 01
1. 80 | 184
131
175
176
177
181 | 127 32
178 31
134 31
131 31
130 31
120 30 | 5 .429
3 .437
5 .434
1 .247 | 0. 27
. 22
. 16
. 14
. 21
. 25 | 0. 09
. 09
. 07
. 07
. 12
. 14 | | Mean | <u> </u> | | | | - | . 466 | ^{*}The factors are obtained from the following formula: $\frac{1}{2}(AC+AB-AC)/\frac{1}{2}(AB\frac{1}{2}BC+AC)$ where A=C rest; B the rho band and C the base line.